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Abstract

This paper studies the belief bias in the workplace. I build a structural model where
workers can learn from coworkers. They choose where to work based on both wage and
perceived learning opportunities. I estimate the model using German administrative
data which contain information on workforce composition and workers’ characteristics.
I propose a methodology to separately estimate the perceived and the correct learning
functions, building on the observation that learning is priced by a competitive market
based on belief. The estimation results show that workers overestimate how much they
can learn from coworkers by seven times. It implies that better knowledgeable workers are
overpaid while the rest are underpaid, which increases the within-team inequality.
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1 Introduction

Do we learn as much as we expected? This paper structurally estimates the belief deviation
from the correct probabilities in a learning-from-coworker setting. In reality, “you can learn
from experienced colleagues” is often seen in a job advertisement, and people do value it. One
may agree to take a low wage just for the learning opportunities, for example, in apprenticeship.
The question is, is it worth it? Will the future wage be high enough to compensate for the
sacrifices today?

This question is challenging because we can observe neither people’s beliefs nor the sorting in
the hiring procedure. I develop a novel way to disentangle the belief from reality. I generalize the
model proposed by Jarosch et al. (2021) by allowing the workers have biased belief about how
much they can learn from coworkers. In the model, workers receive two types of compensation:
learning and wage. The model allows for general forms of production functions and incorporates
varieties of sorting functions. I use the linked employee-employer data from Germany and find
that workers overestimate how much they can learn from coworkers. Quantitatively, the actual
learning parameters are only 12% of the perceived parameters. For example, if a worker believes
her next period wage would increase by on average 10 Euros due to coworkers, it will only
increase by 1.2 Euros. Namely, the learning opportunity is largely overpriced. Junior workers
overpay the learning while senior workers are overpaid for the overestimated positive effects.

The model features two learning functions: one for reality and the other for belief.
The correct learning function governs how knowledge evolves by learning from coworkers.
Meanwhile, the perceived learning function, which may be biased from the correct one,
determines the wage a worker is willing to take. I assume a competitive labor market. The
compensation schedule includes a constant wage and an opportunity to learn from coworkers.
Workers choose where to work by maximizing their lifetime earnings based on their belief.

The structural model only relies on team information, wages, and ages. It is based on
assumptions including a competitive labor market, complete financial market, and stationarity.
On the other hand, it is flexible on the firm side. The method works with general forms of
complementarities across workers and production functions. Instead of working with a specific
functional form, the estimation method uses the realized team composition.

I use the German matched-employee-employer data to estimate the model. The data basis
is the Longitudinal Model 1975-2017 of the Linked Employer-Employee Data from the Institute
for Employment Research (IAB). The data were accessed on-site at the Research Data Centre
(FDZ) of the Federal Employment Agency (BA) at the Institute for Employment Research
(IAB) and via remote data execution at the FDZ. The dataset contains the complete workforce
at a sample of establishments from 2008 to 2017, including characteristics like wage, age, and
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occupation. I use three dimensions of the data to calculate knowledge levels for each worker
and identify the perceived and actual learning parameters. First, I use the wage gap in each
group to back out the knowledge. Second, I use the time series of one’s wage and the team
composition to estimate how the actual knowledge evolves. Third, I estimate the perceived
learning functions by comparing the wages of workers who have the same knowledge but work
in different teams.

Operationally, identifying both the perceived and correct learning parameters depends on
the same assumption, but different samples. Methodologically, it is in the same spirit as the
cross-validation method. I separate the sample based on workers’ knowledge. For each worker,
if there is someone who has the same knowledge and age, but is in a different team, then I
classify both into one of the paired groups. Otherwise, the worker belongs to the unpaired
group. I use the former groups to estimate to what extent the present value of future wages
can make up for the current wage gap, and use the latter group to analyze the knowledge
evolvement over time.

I find that workers overestimate how much they can learn from others. The actual impact
of coworkers is only 12% of one’s belief. For example, if the average wage of a worker’s more
knowledgeable coworkers increased by 100 Euros, according to the belief, her next period wage
would increase by on average 8 Euros times the share of the more knowledgeable workers in
the team. But in fact, her wage only increases by the share of the more knowledgeable workers
times 0.9 Euros. Namely, the learning opportunity is largely overpriced. Junior workers overpay
the learning while senior workers are overpaid for the overestimated positive effects.

The results suggest that the bias in belief drives up wage inequality. In my sample, the
unconditional variance of log wages is 0.21. If rather than holding the current belief, workers
know the correct learning function and firms hire the same group of workers, the unconditional
variance drops to 0.17. I perform a simple variance decomposition. In the data, the between-
team inequality is 0.16, and the within-team inequality is 0.05. In the counterfactual case,
the between-team inequality drops slightly to 0.15, and the within-team inequality decreases
to 0.015. It suggests that there is positive knowledge sorting across firms, and within-team
inequality is largely caused by overestimation. Quantitatively, the biased belief contributes to
71% wage inequality within teams.

Relate Literature - My paper provides empirical evidence on biased belief. It relates to
a strand of behavior economic literature studying the judgment biases, examples include Klos
et al. (2005), Rabin and Vayanos (2010), Miller and Sanjurjo (2018), Gong et al. (2020) and
Andrew and Adams-Prassl (2021). Specifically, this paper finds workers are over-optimism,
which is related to the overconfidence literature, for example Weinstein (1980), Carver et al.
(2010), and Windschitl and Stuart (2015). This paper provides a novel way for researchers to
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identify unobserved belief by analyzing observed actions.
The paper is closely related to the empirical within team learning literature. The structural

model of this paper is based on Jarosch et al. (2021), which estimates the peer effect empirically.
The main difference is that Jarosch et al. (2021) uses within-team information, while my paper
also explores the between-team characteristics. Nix (2020) also shows that there is a positive
peer effect in the workplace. Broadly, this is also a part of the peer effect literature (Mas and
Moretti, 2009; Cornelissen et al., 2017). I contribute to this literature by providing a method
to explicitly disentangle the correct peer effect and the perceived peer effect.

This paper is also connected to the endogenous growth literature, which uses learning from
others as the source of growth. Lucas Jr (2009), Lucas Jr and Moll (2014) and Perla et al.
(2021) study the case in which agents randomly meet others to learn and consequentially
generate growth. Other works (Jovanovic and MacDonald, 1994; Jovanovic, 2014; Perla and
Tonetti, 2014; Luttmer, 2014) in growth theory also explore the growth from imitation and
idea adoption. My paper contributes to this literature by providing direct evidence on sorted
meetings and learning.

The remainder of this paper is organized as follows. In Section 2, I present a model where
agents learn from their coworkers based on the perceived learning function, and their knowledge
evolves according to the correct learning function. Section 3 reports the main results. I propose
an algorithm to structurally estimate the two learning functions using the data and discuss the
implications of the biased belief. Section 4 concludes.

2 Model

I build a model based on Jarosch et al. (2021). There is a unit mass of heterogeneous individuals
in the economy with knowledge z ∈ Z = [0, z̄]. Individuals supply labor inelastically in a
competitive labor market and consume their income. I assume that all individuals have a
probability τ of dying each period. Anyone, who remains alive at age N = 65, leaves the
market exogenously. Each period, a mass δ of new individuals enters the market at age n0 = 22

with a knowledge drawn from the distribution B0 (z). Agents are employed in firms and work
in teams where they can learn from their coworkers. For a worker with knowledge z who has
coworkers z̃, her next period knowledge level z′ is drawn from the distribution G (z′|z, z̃) in
reality while the distribution is G̃ (z′|z, z̃) in belief. Here I assume workers can learn from their
coworkers’ knowledge. In the appendix I extend the model to consider what if some part of
the knowledge cannot be learnt. Financial markets are complete, so individuals maximize the
expected present value of income.

Firms produce in a competitive consumption good market. To enter a market, firms pay
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a fixed cost c, and then draw a technology a ∈ A (a ∼ A (a)). In each period, a firm hires a
team of workers z to produce according to its production function F (z; a), taking wages as
given. Similar as in Jarosch et al. (2021), F (z; a) satisfies minimal structure requirements.
Potentially, the complementarity between workers and technologies can vary across firms or
periods. Therefore, teams generally are heterogeneous across firms and across time.

2.1 Firms

Firms hire workers in a competitive labor market and take the wage schedule as given. Use n

to denote the total number of workers in the team. zi is the ith element of z, and z̃−i is the set
of i’s coworkers. The total wage W (z) if it hires the set of workers z can be written as

W (z) =
n∑

i=1

w (zi, z̃−i) . (1)

A firm chooses the team of workers to maximize its profit

π (a) = max
z

F (z; a)−W (z) , (2)

The optimal team setting z (a) satifies

z (a) = argmax
z

F (z; a)−W (z) . (3)

2.2 Workers

To maintain a stationary distribution of workers, assume that the birth rate δ satisfies

δ = τ +
1

N − n0 + 1
(1− τ)N−n0+1 , (4)

Individuals decide where to work in each period. The payoff includes two parts: the wage
w and the learning opportunities. Therefore, an individual is willing to accept a lower wage if
there are more attractive learning opportunities. The wage depends on both one’s knowledge
and the coworkers’ knowledge. Individuals discount the future using a discount rate β. Because
the worker leaves the market mandatorily at age N , the value function depends on the current
age of the worker. The value function of an individual with knowledge z and age n is

V (z, n) = max
z̃∈Z̃

w (z, z̃, n) + β

∫
V (z′, n+ 1)dG̃(z′|z, z̃), (5)
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where Z̃ represents the set of all possible combinations of coworkers. It means that each period
an individual chooses where to work to maximize her wage and her discounted future income.
Based on the assumption of a competitive labor market, in equilibrium, the wage should be
such that everyone is indifferent to working in any firm. Therefore, the value function does not
depend on the coworker’s knowledge. Specifically, when n = N , the value function equals the
current wage

V (z,N) = max
z̃∈Z̃

w (z, z̃, N) . (6)

This is because learning from co-workers does not matter anymore. Therefore, when n = N ,
the wage only depends on the worker’s own knowledge level z, not the coworkers’

w (z, z̃, N) = w (z,N) , (7)

In equilibrium, the wage schedule adjusts so that workers are indifferent across teams. The
wage satisfies

w (z, z̃, n) = V (z, n)− β

∫
V (z′, n+ 1)dG̃(z′|z, z̃), (8)

for any z, z̃ realized in the equilibrium. One implication is that for any z̃, z̃′

w (z, z̃, n− 1)− w (z, z̃′, n− 1) = −β

[∫
V (z′, n)dG̃ (z′|z, z̃)−

∫
V (z′, n)dG̃ (z′|z, z̃′)

]
. (9)

The wage difference in (n− 1) is used to compensate for the difference in learning opportunities.
For example, two identical workers i and j work in different teams. If i can on average learn
more from working than j due to the team setting, then she will receive a lower wage.

2.3 Labor market and Firm Entry

Define B (z) the cumulative density function of z. For any team of workers z, let N (z, z) be
the number of workers whose knowledge is not larger than z. Labor market clearing yields

B (z) = m

∫
N (z (a) , z) dA (a) ,∀z, (10)

where m is the mass of firms in the economy.
Firm entry satisfies the free entry condition∫

[π (a)− c] dA (a) = 0. (11)
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2.4 Knowledge Distribution

Define O (z̃|x) : Z̃× Z → [0, 1] to be the equilibrium share of workers with knowledge x whose
coworkers are strictly dominated by the vector z̃. Therefore, for workers with knowledge x,
the probability their knowledge will be less than z is

∫
z̃∈Z̃G (z|x, z̃) dO (z̃|x). The stationary

distribution in equilibrium satisfies

B (z) = τB0 (z) + (1− τ)

∫
x

∫
z̃∈Z̃

G (z|x, z̃) dO (z̃|x) dB (x) . (12)

2.5 Equilibrium

A stationary competitive equilibrium includes a wage schedule w, a profit function π, an
employment arragement z, a value function V , a mass of firms m, a stationary distribution
B and a coworker vector set Z̃, such that: (1) w and V solve (2) and (5); (2) z solves (2); (3)
the labor market clears (10) for each knowledge level; (4) π satisfies the free entry condition
(11); (5) the law of motion of the knowledge distribution 12 holds.

Next, I summarize the assumptions in the model. The goal is to ensure that the value
function V (z, n) strictly increases in z. When comparing two vectors z1 and z2, they have the
same length N and are ordered by the element size. z1 > z2 holds when each element in z1

is larger or equal to the corresponding elements in z2: z1i ≥ z2i, i = 1, 2, ...N , and inequality
holds for at least one element.

Assumption 1. F (z; a) strictly increases in z.

This assumption means that if the knowledge of one or some workers increases, the firm’s
production will also increase.

Assumption 2. G̃(z′|z, z̃) and G(z′|z, z̃) strictly decreases in z and z̃.

Assumption 2 requires that both in belief and in reality, for two workers having the same
set of coworkers, the one with higher knowledge will stochastically learn more than the other.
Also, for two identical workers, both in belief and in reality, the one who works with higher
knowledge coworkers will have stochastically more knowledge next period.

Assumption 3. Free disposal of knowledge.

Assumption 4. Learning

Three assumptions together lead to following results.

Lemma 1. w (z, z̃1, n) ≤ w (z, z̃2, n), if z̃1 > z̃2.
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Proof. Assumption 2 saysG̃(z′|z, z̃) strictly decreases. The value function V (z, n) is weakly
increasing in z according to Assumption 3. Hence,

∫
V (z′, n)dG̃ (z′|z, z̃) increases with z̃.

w (z, z̃, n) weakly decreases in z̃ using Equation (9).

Lemma 2. If a firm’s worker setting is z (a) = (z1, z̃). Then for ∀z2 > z1, w (z1, z̃, n) <

w (z2, z̃, n) must hold.

Proof. Proof by contradiction. If there are two workers with z1and z2, where z1 > z2 and
w (z1, z̃, n) ≤ w (z2, z̃, n). It means that by hiring z1, the firm can offer a lower wage to this
worker. By Assumption 1, firms can produce more output. Additionally, it is less costly for
firms to hire the rest workers, because of Lemma 1. Hence, firms would always want to hire z1

over z2.

Proposition 1. V (z, n) strictly increases in z.

Proof. Use Mathematical induction . Consider z1 < z2.
First, when n = N , V (z1, N) = w (z1, N) < w (z2, N) = V (z2, N) according to Lemma 2.
Second, assume V (z1, n) < V (z2, n) holds for some n. Then

V (z1, n− 1) = w (z1, z̃, n− 1) + β

∫
V (z′, n)dG̃(z′|z1, z̃)

< w (z2, z̃, n− 1) + β

∫
V (z′, n)dG̃(z′|z2, z̃)

= V (z2, n− 1) (13)

Hence, V (z, n) strictly increases in z.

3 Structural Estimation

Based on the model, this section structurally estimates the perceived and actual learning
functions G̃ (·) and G (·). The data basis is the Longitudinal Model 1975 – 2017 of the
Linked Employer-Employee Data from the IAB. The data were accessed on-site at the Research
Data Centre (FDZ) of the Federal Employment Agency (BA) at the Institute for Employment
Research (IAB) and via remote data execution at the FDZ. The dataset contains the complete
workforce at a sample of establishments from 2008 to 2017.

3.1 Data

This section briefly describes the key dimensions of the dataset. The establishment part includes
all establishments that are surveyed by an annually conducted survey at least once from 2009
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Figure 1: Team Size Distribution
Note: The figure plots the team size distribution in the year 2009 for teams with 2-99 workers.

to 2016. The individual part includes workers who were employed in any one of the sample
establishments for at least one day during 2008 - 2017. For each individual, it also contains the
employment biographies from 1975 - 2017. The data include worker-level information on the
establishment, occupation, wage, and individual characteristics like age, gender, and education.
I define working groups following Jarosch et al. (2021): a group is defined as a set with at least
two workers in the same establishment and occupation in a given year.

Figure 1 reports the team size distribution in 2009. The figure truncated at 100 workers per
team. The sample contains 24,118 teams. The size distribution is skewed, with a median of 5
people in contrast to an average of 23.

Figure 2 shows the age distribution of all workers in teams. The average age is 43. The
10th, 50th, and 90th percentiles are 28, 44, and 56, respectively.

Figure 3 reports the distribution of the average daily wages during the year 2009 in 2015
Euros. The mass-point observations are the top-coding of the wage data. 1

This paper builds upon the wage difference within teams. Figure 4 shows the distribution of
the gap between the log wage of a worker and her coworkers. The mean is -0.015, the quartiles

1Following Jarosch et al. (2021), I treat the top-coded observations as the actual wages and do not correct
for top-coding. In total, 10.6% of observations are top-coded.
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are -0.09, 0.00, and 0.07.

3.2 Identifying Perceived And Actual Learning Parameters

I use three dimensions of the data to identify the perceived and actual learning parameters, as
well as calculate knowledge levels for each worker. First, I use the wage gap in each group to
back out the knowledge. Second, I use the time series of one’s wage and the team composition to
estimate how the actual knowledge evolves. Third, I estimate the perceived learning functions
by comparing the wages of workers who have the same knowledge level but work in different
teams.

The identification only relies on the worker’s Bellman equation

V (z, n) = w (z, z̃, n) + βE (V (z′, n+ 1)|z, z̃) . (14)

The method does not impose any restrictions on firms’ production in addition to the previous
assumptions, nor on the set of active firms – it simply uses all observed firms.

Because z does not have a natural cardinality, I choose a convenient one. If w (z, n) is
the wage for workers who works along in the equilibrium, I choose a cardinality of z so that
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w (z, n) = z. Therefore, Equation 14 can be written as

V (z, n) = z + β

∫
V (z′, n+ 1)dG̃(z′|z), (15)

with a boundary condition
V (z,N) = z. (16)

Worker i next period’s knowledge includes two parts

z′i = E (z′i|zi, z̃−i) + εi, (17)

a conditional expectation and an unexpected shock. All moment conditions are based on
E (εi|zj) ,∀i, j, which is implied by the assumption that the shock is independent of workers’
knowledge.

I choose the functional forms for the two learning functions based on Jarosch et al. (2021).
The actual learning function takes the following parametric form:

E (z′i|zi, z̃−i) =
1

I − 1

∑
j ̸=i

ziΘ

(
zj
zi

)
, (18)

and the perceived learning function is

Ẽ (z′i|zi, z̃−i) =
1

I − 1

∑
j ̸=i

ziΘ̃

(
zj
zi

)
. (19)

I is the team size and both Θ(·) and Θ̃ are weakly increasing function. Two learning functions
share the same functional form but different parameters:

Θ

(
zj
zi

)
=

1 + θ0 + θ+
(

zj
zi
− 1

)
if zj

zi
> 1

1 + θ0 + θ−
(

zj
zi
− 1

)
if zj

zi
≤ 1

(20)

and

Θ̃

(
zj
zi

)
=

1 + θ̃0 + θ̃+
(

zj
zi
− 1

)
if zj

zi
> 1

1 + θ̃0 + θ̃−
(

zj
zi
− 1

)
if zj

zi
≤ 1

(21)

Operationally, this paper estimates a case where θ0 = θ̃0, θ
+ = γθ̃+, θ− = γθ̃−. Intuitively, it

means workers know how knowledge evolves without learning from coworkers. They may have
a misperception about how much they are affected by coworkers though, due to reasons such
as bias when estimating others’ knowledge levels.
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The value function yields based on the chosen functional form

V (zi, ni) = zi + βV ((1 + θ0) zi, ni + 1) . (22)

Use
V (zi, N) = zi, (23)

and solve backwards gives

V (zi, ni) =

N−ni∑
t=0

[β (1 + θ0)]
t zi

= β̃izi (24)

where β̃i =
1−[β(1+θ̃0)]

N−ni+1

1−β(1+θ̃0)
. The Bellman equation is

β̃izi = wi + Ẽ (z′i|zi, z̃−i) . (25)

There is one equation for each worker. Given perceived learning parameters
{
θ̃0, θ̃

+, θ̃−
}

, the
knowledge level zi is a function of wages and ages.

I estimate the perceived parameter γ by comparing wage gaps between workers with the
same knowledge level and same age. If workers i and j have the same knowledge level and the
same age, then from Equation (9) their wages satisfy:

β̃i

(
z′i − z′j

)
= −γ (w (zi, z̃−i, ni)− w (zj, z̃−j, nj))−

β̃i

γ
(εj − εi) . (26)

The moment conditions are
E (zjεi|∃k, zk = zi) = 0 (27)

For each age ni and corresponding β̃i, there is one moment condition. Operationally, I use the
moment conditions for n = {20, 21, ...64}. Together, the 45 moments identify γ.

I estimate the actual learning parameters by tracking the evolvement of knowledge

z′i = (1 + θ0) zi +
1

I − 1

θ−
∑
zj≤zi

(zj − zi) + θ+
∑
zj>zi

(zj − zi)

+ εi. (28)

The parameters can be estimated
{
θ̃0, θ̃

+, θ̃−
}

by running a linear regression.
The algorithm is described below:
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1. For every γ in a reasonable range [γ−, γ+], guess the perceived learning parameters{
θ̃0, θ̃

+, θ̃−
}Guess

.

2. Given the γ and
{
θ̃0, θ̃

+, θ̃−
}Guess

, I can back out the knowledge z for all workers using
Equation (25).

3. Pair workers according to knowledge and age: two workers are in a group if both knowledge
and ages are the same. Workers who are paired are grouped into subgroups by age, and
the rest are grouped together.

4. Use the unpaired group to run regression (28). Update the learning parameters
{
θ̃0, θ̃

+, θ̃−
}Guess

accroding to the regression.

5. Repeat step 2 to 4 until convergence.

6. Use the paired groups to estimate the moment conditions from equation system 26.

7. Find the γ that minimizes the squared difference between data and model.

Identifying both
{
θ̃0, θ̃

+, θ̃−
}

and γ depends on the assumption that shocks ε are independent
with knowledge z. The key is to use two separate and representative samples to estimate the
two sets of parameters. Methodologically, it is in the same spirit as the cross-validation method.
In practice, I use the 45 paired samples to estimate γ, that is, to what extent the present value
of future wages can make up for the current wage gap. I use the unpaired sample to analyze
the knowledge evolution over time and to estimate the learning parameters.

3.3 Estimation Results

Using the estimation method developed to estimate both the perceived learning function{
θ̃0, θ̃

+, θ̃−
}

and the perceived parameter γ. The results are reported in Table (1). The

perceived learning parameters are reported in panel A. θ̃0 is positive, which represents that
workers accumulate knowledge during work. This is similar to the common sense of learning-
by-doing. The perceived learning from more and less knowledgeable workers is 0.08 and 0.05,
respectively. It means that workers think that they are affected asymmetrically by their
coworkers: workers are more heavily impacted by more knowledgeable coworkers than the rest.
The numbers can be interpreted in terms of expected wage changes. Consider a case in which a
worker’s more knowledgeable coworkers become even better. For example, if the average wage
of a worker’s more knowledgeable coworkers increase by 100 Euros, according to the belief, her
next period wage will increase by on average 8 Euros times the share of the more knowledgeable
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coworkers in the team. On the other hand, if the more knowledgeable coworkers stay the same,
while the less knowledgeable coworkers become better with a 100 Euros wage increases, then her
next period wage will go up by on average 5 Euros times the share of the more knowledgeable
workers in the team. This estimation is consistent with the results in Jarosch et al. (2021).
They also find workers are more affected by more knowledgeable coworkers.

The key finding is that the difference between real life and perception is huge, with γ =

0.12. It means that the actual impact of coworkers is only 12% of one’s belief. Therefore,
in the previous example, when the average wage of a worker’s more knowledgeable coworkers
increase by 100 Euros, her next period wage will increase by on average the share of the
more knowledgeable coworkers in the team times 0.9 Euros, instead of 8 Euros. If the more
knowledgeable coworkers stay the same, while the less knowledgeable coworkers become better
with a 100 Euros wage increases, then her next period wage will go up by on average the share
of the more knowledgeable workers in the team times 0.6 Euros, rather than 5 Euros. It means
that workers overestimate how much they can learn from coworkers. Namely, the learning
opportunity is largely overpriced. Junior workers overpay the learning while senior workers are
overpaid for the overestimated positive effects.

Table 1: Estimation Results

Panel A: GMM Estimation

θ̃0 θ̃+ θ̃− γ obs

Estimation 0.01688 0.07826 0.05000 0.120 4188203
(0.000001) (0.00003) (0.00003) (0.005)

Panel B: The Actual Learning Parameters Based on the Estimation

θ0 θ+ θ−

Results 0.01688 0.00939 0.00600
[1] Note: the standard deviation is reported in the parenthesis. Belief is estimated using GMM.
The reality is inferred based on the estimation.

The estimation can be extended to incorporate other form of learning functions. For
example, the assumption θ0 = θ̃0, θ

+ = γθ̃+, θ− = γθ̃− can be relaxed. The same algorithm will
still work.

3.4 Inequality

This section considers what if the belief were correct, that is, θ0 = θ̃0, θ
+ = θ̃+, θ− = θ̃−.

According to the structural model, the learning opportunities contribute to the wage difference
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Table 2: Inequality Change When Perception Is Correct

Benchmark Correct Belief

Wage Inequality 0.210 0.167
Between Teams Wage Inequality 0.158 0.152
Within Team Wage Inequality 0.052 0.015

Note: the table reports the change in inequality when there is no bias in belief. The inequality is
measured by unconditional variance of log wages

and consequentially income inequality. The overestimated learning opportunity, therefore,
affects the income inequality. Assume that suddenly people realize that their belief is biased and
know the correct learning function. I focus on a special case where firms are willing to adjust
the wages according to the new belief without changing team compositions. As a result, the
wages of workers with more knowledge go down, since they were overpaid before. Meanwhile,
less knowledgeable workers receive a wage raise.

The inequality levels are shown in Table (2). The first column shows the total wage
inequality in the data, which is measured by the variance of log wages. The second column
reports the wage inequality if there is no bias in belief. The total wage inequality drops from
0.21 to 0.17. To explore the mechanism behind, I calculate a simple inequality decomposition
and find that the changes are mainly from the within-team inequality. It decreases by more than
70%: from 0.052 to 0.015. This result implies that the overestimation contributes significantly
to the within-team wage difference, where more knowledgeable workers are paid even more.
Moreover, the results show that the between team inequality almost remains unchanged: it is
0.158 in the data and 0.152 under the correct belief. This suggests that there is positive sorting
between firms.

4 Conclusion

This paper shows evidence suggesting people overestimate the magnitude of learning from
coworkers. As a result, senior workers are overpaid for their overestimated impact on others,
while junior workers are overcharged for the overstated learning opportunities they have by
working with experienced coworkers. This suggests that the biased belief may lead to an
increase in within-team wage inequality.

This paper points to a plausible way to reduce inequality: to narrow the discrepancy
between the perceived and correct learning function. It also provides suggestive evidence on
the explanation of wage inequality. The between-firm inequality is largely due to knowledge
differences while the within-firm inequality is mainly driven by learning opportunities. There are
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multiple paths for future research. One is to think about optimal policies to reduce inequality
conditional on belief bias. Another is to explore the heterogeneity in bias and how to reduce
biases.
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A Multi-dimension Knowledge

In the baseline model, I assume that workers can learn from their coworkers’ knowledge. One
concern is that the knowledge, as a multi-dimension aggregation, may include components that
one cannot learn. This section studies the impact of non-transmissible knowledge. Assume that
the knowledge z = x+y includes two parts: transmissible x and non-transmissible y. A worker’s
next period non-transmissible knowledge level stays the same, and the transmissible knowledge
level x′ is drawn from the distribution Ĝ(x′|x, x̃). Assume the actual learning function takes
the same functional form as (18)

E(x′
i|xi, x̃−i) = (1 + θ0)xi +

1

I − 1

θ+
∑
xj>xi

(xj − xi) + θ−
∑
xj<xi

(xj − xi)

 (29)

Thus, the knowledge z follows

E(z′i|zi, x̃−i) = yi + (1 + θ0)xi +
1

I − 1

θ+
∑
xj>xi

(xj − xi) + θ−
∑
xj<xi

(xj − xi)

 (30)
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The same functional form applies to the perceived learning function ˆ̃G(x′|x, x̃). The wage
function is

w (xi, yi, x̃−i, ni) = xi + yi −
β̃i

I − 1

θ+
∑
xj>xi

(xj − xi) + θ−
∑
xj<xi

(xj − xi)

 (31)

In the benchmark model, a worker’s next period knowledge level z′ is assumed to be drawn
from the distribution G(z′|z, z̃). The wage function is

w (zi, z̃−i, ni) = zi −
β̃i

I − 1

θ+
∑
zj>zi

(zj − zi) + θ−
∑
zj<zi

(zj − zi)

 (32)

Potentially, the misspecification means workers are only affected by partial of their coworkers’
knowledge but the model treats it as if workers are affected by their coworkers’ aggregate
knowledge. To understand how the misspecification affects the result, I consider two specific
functional forms: the non-transmissible part is linear or independent of knowledge. In both
cases, the belief bias is not affected by the learning function misspecification.

A.1 Case 1: the non-transmissible is linear in knowledge

Assume that y = αx. The wage is

w (xi, yi, x̃−i, ni) = (1 + α)xi −
β̃i

I − 1

θ+
∑
xj>xi

(xj − xi) + θ−
∑
xj<xi

(xj − xi)

 . (33)

which can be written as

w (zi, z̃−i, ni) = zi −
β̃i

I − 1

 θ+

1 + α

∑
zj>zi

(zj − zi) +
θ−

1 + α

∑
zj<zi

(zj − zi)

 . (34)

If the model is estimated using the misspecified model in Equation (32), it is the same as using
equation (34). Therefore, the estimated knowledge level is z, the aggregate knowledge level.
The estimated learning parameters θ̂+ and θ̂− satisfy that θ̂+ = θ+

1+α
, θ̂− = θ−

1+α
. The same bias

applies to the perceived learning parameters ˆ̃θ+ = θ̃+

1+α
, ˆ̃θ− = θ̃−

1+α
. As a result, the relationship

between θ, θ and θ̃+, θ̃− – the estimation of γ is not affected by the misspecification.
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A.2 Case 2: the non-transmissible is independent with knowledge

Assume that yi ⊥ zj, ∀i, j. The wage is

w (xi, yi, x̃−i, ni) = xi + yi −
β̃i

I − 1

θ+
∑
xj>xi

(xj − xi) + θ−
∑
xj<xi

(xj − xi)

 . (35)

which can be written as

w (zi, z̃−i, ni) = zi −
β̃i

I − 1

θ+
∑
zj>zi

(zj − zi) + θ−
∑
zj<zi

(zj − zi)

+ ui. (36)

where ui =
β̃i

I−1

(
θ+

∑
zj>zi

(yj − yi) + θ−
∑

zj<zi
(yj − yi)

)
, and ui ⊥ xj,∀i, j. Therefore, the

estimated knowledge level is ẑi = zi + ηi, zi ⊥ ηi. The regression results are not affected by the
misspecification; namely, the estimation of γ is not affected by the misspecification.

20


	Introduction
	Model
	Firms
	Workers
	Labor market and Firm Entry
	Knowledge Distribution
	Equilibrium

	Structural Estimation
	Data
	Identifying Perceived And Actual Learning Parameters
	Estimation Results
	Inequality

	Conclusion
	Multi-dimension Knowledge
	Case 1: the non-transmissible is linear in knowledge
	Case 2: the non-transmissible is independent with knowledge


